Market Update

04 April 2019

Cobalt Blue Holdings Limited A Green Energy Exploration Company

COB

Commodity Exposure Cobalt & Sulphur

ASX Code:

Robert Biancardi	Non-Exec Chairman
Hugh Keller	Non-Exec Director
Robert McDonald	Non-Exec Director
Joe Kaderavek	CEO & Exec Director
Robert Waring	Company Secretary
Capital Structure:	

Ordinary Shares at 04/04/2019:	124.6m
Options (ASX Code: COBO):	25.4m
Market Cap (undiluted):	\$18.7m
Share Price:	
Share Price at 04/04/2019	\$0.15

Cobalt Blue Holdings Limited

614 466 607
Suite 17.03, 100 Miller Street
North Sydney NSW 2060
(02) 8287 0660
www.cobaltblueholdings.com
info@cobaltblueholdings.com
f Cobalt.Blue.Energy
n cobalt-blue-holdings

April 2019 - Highlights

Significant Thackaringa Resource Upgrade

KEY POINTS:

- Cobalt Blue Holdings (ASX:COB) is pleased to announce a significant Mineral Resource upgrade at the Thackaringa Cobalt Project, located near Broken Hill, NSW.
- The global Mineral Resource estimate now comprises 111Mt at 889ppm cobalt-equivalent (CoEq) (715ppm Co & 7.8% S) for 79,500t contained cobalt (at a 400ppm CoEg cut-off). The update includes a maiden Measured Resource of 18 Mt at 1150ppm cobalt-equivalent (CoEq) (928 ppm Co & 9.9% S) for 17,100 tonnes of contained cobalt (at a 400ppm CoEq cut-off). Measured and Indicated resources make up approximately 66% of the global Mineral Resource.
- The updated Mineral Resource follows the completion of some 9,500m of recent drilling (completed during Q4 18 - Q1 19).
- Inputs derived from the PFS have supported a revision of the Mineral Resource cut-off grade from 500ppm Co to 400ppm CoEq with inclusion of elemental sulphur as a revenue stream contributing to a significant increase in the Mineral Resource.

Completion of this latest Mineral Resource estimate reflects the culmination of a sustained exploration effort by COB (30,000m drilled from 2016) realising a 235% increase in resource tonnes and a 189% uplift in contained cobalt since COB issued its prospectus and became an independent company listed on the ASX.

Additional drilling activities will target resource infill at the Railway and Big Hill deposits. Drill testing of distal exploration targets, including geophysical anomalies, continues to remain a central piece of COB's long-term exploration strategy.

In the immediate term, COB will now direct future technical activities to metallurgical testwork, with the key deliverables related to large-scale bulk testing.

Cobalt Blue's CEO, Joe Kaderavek commented "We are pleased with the improved classification achieved through the recent drilling campaign; 66% of the Mineral Resource is now available for potential conversion to Proven and Probable Ore Reserves. COB continues to maintain a strong record of resource growth with the update demonstrating a firm step toward realisation of COB's +20 year mine life target."

Mineral Resource Overview

The Thackaringa Mineral Resource update follows some 9,500m drilling completed during Q4 18 – Q1 19 targeting definition of a component of Measured Mineral Resource through enhancement of geological confidence and data density by infill drilling. The infill program focussed on the upper extent (<200m from surface) of the Pyrite Hill deposit which extends over 1.2km along strike and is currently drill tested to approximately 300m down dip.

At Pyrite Hill, the drilling fleet successfully navigated steep terrain to increase data density through the oxidation profile. Drilling intersected variable zones of sulphide mineralisation intercalated with localised oxidation providing sufficient constraint to include 'transition' (partially weathered) material for Pyrite Hill.

The recent campaign also allowed completion of an initial phase of drilling to test down-dip extensions of the Pyrite Hill deposit with holes intersecting mineralisation approximately 180–280m below surface.

Table 1. The updated Mineral Resource estimates for the Thackaringa Cobalt deposits (at a 400ppm CoEq cut-off) detailed by Mineral Resource classification (CoEq = Co ppm + S % * 22.235).

Note minor rounding errors may have occurred in compilation of this table.

Category	Mt	Co ppm	CoEq ppm	Fe %	S %	Pyrite %	Contained Co (t)	Pyrite Mt
Pyrite Hill (at a 40	0ppm CoEq c	ut-off)						
Measured	18	928	1150	10.7	9.9	19	17,100	3
Indicated	7	759	940	9.7	8.1	15	5,600	1
Inferred	7	820	1020	10.4	8.9	17	5,700	1
Total	33	867	1070	10.4	9.3	17	28,400	6
Railway (at a 400	ppm CoEq cu	t-off)						
Indicated	37	677	843	8.5	7.4	14	25,100	5
Inferred	24	650	821	9.0	7.7	14	15,300	3
Total	61	667	834	8.7	7.5	14	40,500	9
Big Hill (at a 400p	pm CoEq cut	-off)						
Indicated	11	629	767	6.7	6.2	12	6,800	1
Inferred	7	553	678	6.2	5.6	11	3,900	1
Total	18	599	732	6.5	6.0	11	11,000	2
Total (at a 400ppr	n CoEq cut-of	ff)						
Measured	18	928	1150	10.7	9.9	19	17,100	3
Indicated	55	679	841	8.3	7.3	14	37,500	8
Inferred	38	663	831	8.8	7.5	14	24,900	5
Total	111	715	889	8.9	7.8	15	79,500	16

Material changes from the preceding 2018 Mineral Resource (see ASX Announcement 'Thackaringa – Significant Mineral Resource upgrade' on 19 March 2018) can be attributed to the following:

Infill & Extensional Drilling of Sulphide Material

The Mineral Resource update includes data obtained during the recent drilling campaign at Pyrite Hill; 64 drill holes for approximately 8,700m. This drilling substantially increased data density and improved geological confidence reflected by the revised classifications.

Drilling of Near Surface Oxide Material

Approximately 430m of the broader campaign successfully intersected the oxide profile at Pyrite Hill supporting a revision of the oxidation surfaces. The improved geological constraint and increased assay data informed extension of the block model through to the base of complete oxidation; allowing addition of 'transition' material excluded from the preceding estimate.

Conceptual Pit Optimisation

As a means to constrain the reportable Mineral Resource, COB has utilised pit optimisations at a 1.3 revenue factor.

Cut-Off Optimisation

With completion of the Thackaringa Preliminary Feasibility Study and Ore Reserve estimate, COB had established a technically feasible and economic project for production of cobalt sulphate heptahydrate and elemental sulphur from the Thackaringa deposits. The study has provided a robust basis for the revision of the resource cut-off grade to 400ppm CoEq: the previous 500ppm cobalt cut-off did not take into account sulphur as a revenue producing co-product.

The revised cut-off grade considers modifying factors guided by the PFS and appropriately incorporates revenue streams from elemental sulphur in addition to cobalt.

A discussion of the Australian sulphur market was contained in the September 2018 PFS announcement (see ASX Announcement 'Thackaringa Pre-Feasibility Study Announced' 4 July 2018)

Figure 1. Thackaringa Cobalt Project district map

Figure 2. Pyrite Hill deposit 2018–2019 drill hole collar plan illustrating drill holes relative to historical drilling. The inputs and results underpinning the 'upside pit design' are as released 4 July 2018 'Thackaringa Pre-Feasibility Study Announced.'

Figure 3. Pyrite Hill deposit drilling cross section showing strong continuity of mineralisation grade and thickness down-dip. Historical intersections are as released 4 May 2017 '2017 Update – Strong Drilling Results Continue' and the inputs and results underpinning the 'upside pit design' are as released 4 July 2018 'Thackaringa Pre-Feasibility Study Announced.'

Figure 4. Pyrite Hill Mineral Resource block model looking southwest illustrating block distribution by resource classification (bottom) and cobalt equivalent grade (top).

Figure 5. Railway Mineral Resource block model looking southeast illustrating block distribution by resource classification (bottom) and cobalt equivalent grade (top).

Figure 6. Big Hill Mineral Resource block model looking southeast illustrating block distribution by resource classification (bottom) and cobalt equivalent grade (top).

Competent Person's Statement

The information in this report that relates to Exploration Targets, Exploration Results and Mineral Resources is based on information compiled by Mr Peter Buckley, a Competent Person who is a Member of The Australian Institute of Geoscientists (MAIG). Mr Buckley is employed by Left Field Geoscience Services and engaged by Cobalt Blue Holdings on a consulting basis.

Mr Buckley has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Buckley consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The revised Mineral Resource was independently prepared by SRK Consulting using a Co-Kriging ('CK') method of estimation, suitable for the style of mineralisation. Mr Danny Kentwell, Principal Consultant (Resource Evaluation) at SRK Consulting, was engaged to estimate the Mineral Resource as the independent Competent Person. The Mineral Resource has been estimated and reported in accordance with the guidelines of the 2012 edition of the Australasian Code for the Reporting of Exploration Results, Minerals Resources and Ore Reserves ('2012 JORC Code').

Cobalt Blue Background

Cobalt Blue Holdings Limited (ASX: COB) is an exploration and project development company focussed on green energy technology. Work programs are advancing to enable an upgrade of the Mineral Resource at the Thackaringa Cobalt Project in New South Wales.

Cobalt is a strategic metal in strong demand for new generation batteries, particularly lithium-ion batteries now being widely used in clean energy systems.

Potential to extend the Mineral Resource at Pyrite Hill, Big Hill, Railway and the other prospects is high. Numerous other prospects within COB's tenement package are at an early stage and under-explored.

Looking forward, we would like our shareholders to keep in touch with COB updates and related news items, which we will post on our website, the ASX announcements platform, as well as social media such as Facebook () and LinkedIn (in). Please don't hesitate to join the 'COB friends' on social media and to join our newsletter mailing list at our website.

1/Jula

Joe Kaderavek Chief Executive Officer info@cobaltblueholdings.com P: (02) 8287 0660

Previously Released Information

This ASX announcement refers to information extracted from the following reports, which are available for viewing on COB's website http://www.cobaltblueholdings.com

- 26 February 2019: Positive Large Scale Testwork Results
- 5 February 2019: Drilling Campaign Update
- 16 January 2019: Drilling Campaign Paused. Technical Work Programs Continue
- 05 December 2018: Thackaringa Cobalt Project Drilling and Water Supply Update
- 01 November 2018: Thackaringa Feasibility Study Drilling Campaign Commences
- 13 September 2018: Bankable Feasibility Study Commences with Drilling Campaign and Project Optimisation Studies
- 04 July 2018: Thackaringa Pre Feasibility Study Announced
- 20 April 2018: Thackaringa JV Stage One Completed
- 19 March 2018: Thackaringa Significant Mineral Resource Upgrade
- 05 March 2018: PFS Calcine and Leach Testwork Complete Strong Results
- 24 January 2018: Significant Thackaringa Drilling Program complete Resource Upgrade pending

Geology and Geological Interpretation

The Thackaringa project is located in a deformed and metamorphosed Proterozoic supracrustal rock succession named the Willyama Supergroup, which is exposed as several inliers in western New South Wales, including the Broken Hill Block. Exploration by Cobalt Blue Holdings has been focused on the discovery of cobaltiferous pyrite deposits.

The project area covers portions of the Broken Hill and Thackaringa group successions which host the majority of mineralisation in the region, including the world-class Broken Hill Ag-Pb-Zn deposit. The extensive sequence of quartz-albite gneiss that hosts the cobaltiferous pyrite mineralisation is interpreted as belonging to the Himalaya Formation, which is stratigraphically at the top of the Thackaringa Group.

The Thackaringa deposits are characterised by large tonnage cobaltiferous pyrite mineralisation hosted by a quartz + albite gneiss. Two key structural controls on mineralisation are, (1); the primary foliation (bedding), as a fluid flow pathway and site for deposition of cobaltiferous pyrite, and (2); bedding parallel shear zones at the contact of quartz – albite gneiss. These shear zones appear to be responsible for fold thickening of the quartz – albite gneiss which further convolutes folding that appears to be slump or soft-sed-iment folding.

Sampling/sub-sampling Techniques and Sample Analysis Method

Sampling and sub-sampling techniques have varied between phases of exploration at the Thackaringa Project and are summarised below:

- Reverse circulation drilling was used to obtain a representative sample by means of splitting. Samples were submitted for analysis using a mixed acid digestion and ICP-MS/AES methodology for a variable suite of elements.
- Diamond drilling was used to obtain core from which variable sample intervals were sawn or hand split, in the case of historical drill holes. Samples were submitted for analysis using a mixed acid digestion and AAS or ICP-MS/AES methodology.

Drilling Techniques

The Thackaringa drilling database comprises a total of 68 diamond drill holes, 184 reverse circulation (RC)/percussion drill holes and 21 diamond drill holes with RC/percussion pre-collars of varying depths. Diamond drilling was predominantly completed with standard diameter, conventional HQ and NQ with historical holes typically utilising RC and percussion pre-collars to an average 25 metres (see Drill hole Information for further details). Early (1960-1970) drill holes utilised HX – AX diameters dependent on drilling depth. Reverse circulation drilling utilised standard hole diameters (4.8"-5.5") with a face sampling hammer.

Since 2013 all diamond drilling has been completed using a triple tube system with an NQ3 - HQ3 diameter. Drill holes were typically drilled at angles between 40 and 60 degrees from horizontal and the resulting core was oriented as part of the logging process.

Mineral Resource Estimation Methodology

The Mineral Resource estimate was completed by Co-Kriging ('CK') Co, Fe and S in the Isatis software package. Eleven domains are used all with hard boundaries to control geology, geometry and grade and ensure appropriate samples are selected for estimation. An additional transitional material domain was used at Pyrite Hill with a soft boundary into the fresh material.

The orientations of both variograms and search ellipses were varied on a block by block basis controlled by a set of trend and fold wireframes. Multivariate variography was completed for all domains with sufficient data. Given the folded nature of many of the domains and the use of local orientations, only three multivariate models were utilised for estimation. Two for the Pyrite Hill domain (North and South) and another for all of the remaining Big Hill and Railway domains.

5m composites were used with residual short lengths being incorporated and redistributed such that final composite lengths may be slightly shorter and longer than 5m. This length was chosen to be consistent with the 5m x 10m x 10m parent block dimensions and the assumed bulk mining approach. No top cuts or caps were used for any variables as grade distributions were not highly skewed and estimates were validated without the need for cutting or capping.

The estimation utilised a single pass approach with interpolation and extrapolation limited by both optimum sample numbers controlled by sectors and overall search ellipse distances. Search distances are anisotropic to the ratios of the search ellipse (5:1 cross strike, 1:1 down dip), that is samples are selected / prioritised within successively larger ellipses rather than by spherical distances. A minimum of 4 samples, an optimum of 8 composites and a maximum of 16 composites was used. A higher sample search with an optimum of 32 composites and maximum of 64 was tested maximising the regression slopes and smoothing the estimate but this excessively smoothed the block distribution and did not reflect the true block variability.

Block size used is 5m (east), 10m in (north) and 10m (elevation). This compares to an average drill spacing of between 25m and 60m along strike with average sample lengths of 1m combined with variogram ranges between 115m and 160m along strike, 70m to 80m down dip and 18m to 40m across strike.

Validation of the estimate was completed by:

- Statistical comparisons to declustered composite averages per domain at zero cut off.
- Statistical inspection of density, regression slopes, kriging efficiency, number of composites used.
- Visual inspection of grades, regression slopes, kriging efficiency, number of composites used.
- Comparison of grades and tonnages above cut off to previous estimates.
- Swath plots.
- Global change of support checks.

Maximum extrapolation for Inferred material is approximately 120m and averages around 80m.

Mineral Resource Classification

Classification is based on the kriging regression slope with class surfaces created from viewing the regression slopes of the estimated blocks in section. Measured is defined as all fresh material above a 0.8 kriging regression slope surface. Indicated is defined as all material above the 0.5 kriging regression slope surface together with all Transition material. Inferred is defined as all material above the 0 kriging regression slope surface and below the 0.5 kriging regression slope surface.

The classification reflects the Competent Person's view of the deposit.

Cut-off Grade

The Mineral Resource has been reported at a cut-off of 400ppm cobalt equivalent based on an assessment of material that has reasonable prospects of eventual economic extraction.

The revised cut-off grade incorporates revenue streams from elemental sulphur; an economic by-product of the processing pathway defined in the PFS. The cobalt equivalent grade and has been derived from the following cut-off calculation **CoEq ppm = Co ppm** + (S ppm × (S price/ Co price) × (S recovery/ Co recovery))¹.

This equates to CoEq ppm = Co ppm + (S% × 22.235). The parameters used for this calculation are listed in the table below.

Assumption	Input
A\$/US\$ Exchange Rate	0.74
Cobalt Price	US\$27/lb Co ²
Sulphur Price	US\$150/t
Cobalt Recovery	85%
Sulphur Recovery	75%

1 The Company confirms all elements included in the metal equivalence calculation have reasonable potential to be recovered and sold.

2 Cobalt price sourced from SRK Consulting.

The revised cobalt equivalent cut-off grade results in an increase to the reportable Mineral Resources. A comparison between the 2018 and 2019 Mineral Resources at the previous 500ppm cobalt cut-off is shown in Tables 2 and 3. The 2018 Mineral Resource was reported prior to the completion of the PFS and did not consider the benefits of sulphur.

Table 2. The superseded 2018 Mineral Resource estimates for the Thackaringa Cobalt deposits(at a 500ppm Co cut-off) detailed by Mineral Resource classification.

Note minor rounding errors may have occurred in compilation of this table.

Category	Mt	Co ppm	Fe %	S %	Pyrite %	Contained Co (t)	Py Mt
Pyrite Hill (at a 500ppm Co cu	ıt-off)						
Measured	-	-	-	-	-	-	-
Indicated	22	937	10.9	10.3	19	20,300	4
Inferred	4	920	11.2	10.8	20	4,000	1
Total	26	934	10.9	10.3	19	24,200	5
Railway (at a 500ppm Co cut-	off)						
Indicated	23	854	10.1	9.2	17	19,400	4
Inferred	14	801	10.4	9.2	17	11,100	2
Total	37	842	10.2	9.2	17	30,800	6
Big Hill (at a 500ppm Co cut-	off)						
Indicated	7	712	7.2	6.9	13	5,200	1
Inferred	2	658	6.7	6.3	12	1,500	0
Total	10	697	7.1	6.7	13	6,700	1
Total (at a 500ppm Co cut-off)						
Measured	-	-	_	-	-	_	_
Indicated	52	869	10.0	9.3	17	44,900	9
Inferred	20	810	10.1	9.2	17	16,600	4
Total	72	852	10.0	9.3	17	61,500	13

Table 3. The updated Mineral Resource estimates for the Thackaringa Cobalt deposits (at a 500ppm Co cut-off) detailed by Mineral Resource classification (constrained by pit optimisations at 1.3 revenue factor and including 'transition' material at the Pyrite Hill deposit).

Note minor rounding errors may have occurred in compilation of this table.

Category	Mt	Co ppm	Fe %	S %	Pyrite %	Contained Co (t)	Py Mt
Pyrite Hill (at a 500ppm Co	cut-off)						
Measured	18	955	10.8	10.1	19	16,800	3
Indicated	6	850	10.1	8.8	17	5,000	1
Inferred	6	853	10.6	9.1	17	5,400	1
Total	30	912	10.6	9.6	18	27,200	5
Railway (at a 500ppm Co cut-off)							
Indicated	23	854	10.1	9.2	17	19,400	4
Inferred	14	820	10.6	9.5	18	11,500	2
Total	37	841	10.3	9.3	17	30,900	6
Big Hill (at a 500ppm Co cu	ıt-off)						
Indicated	8	710	7.2	6.9	13	5,500	1
Inferred	4	655	6.8	6.5	12	2,600	0
Total	12	692	7.0	6.7	13	8,100	1
Total (at a 500ppm Co cut-	off)						
Measured	18	955	10.8	10.1	19	16,800	3
Indicated	36	832	9.5	8.6	16	29,900	6
Inferred	24	809	10.0	8.9	17	19,600	4
Total	78	847	9.9	9.0	17	66,200	13

Modifying Factors

Detailed metallurgical studies completed for the Preliminary Feasibility Study have examined a processing pathway comprising four primary stages of ore treatment:

Concentration of Pyrite from Ore

The mined ore is crushed to $p80 \sim 800-900$ um (p100 1.2mm) and passed over gravity spirals to produce a pyrite concentrate. The gravity tails are screened and the fines fraction (<125 um) is sent to a scavenger flotation circuit to recover any sulphides. The use of gravity spirals, takes advantage of the coarse pyrite grains (p80 200-800 um), and limits costs associated with crushing and milling the ore, as would be the case for a typical flotation circuit requiring feed at p80 100–200 um.

In the PFS testwork program, 820 kg of ore at 607 ppm Co, 7.94% Fe, 7.58% S & 59.84% SiO2 was trialled using a full-sized gravity spiral and a 14 L flotation cell. The recovery of cobalt to concentrate was 92%, at a grade of 3326 ppm. The ore was tested on a continuous pilot basis.

Thermal Decomposition (Pyrolysis) Of Pyrite Concentrate

The pyrite mineral is thermally decomposed into pyrrhotite and elemental sulphur by heating to 650–700°C. A nitrogen atmosphere is used to prevent any oxidation. The off-gas is collected and cooled to recover the sulphur. In the PFS testwork program, 100 kg of concentrate grading 3326 ppm cobalt was processed in a custom-built rotary furnace. Variations in operating conditions were tested, with the best results showing that >95% of the pyrite could be converted into pyrrhotite along with the simultaneous recovery of 40% of the head sulphur. The calcine was then passed through a magnetic separator to prepare a magnetic fraction containing pyrrhotite for leaching, and a non-magnetic fraction containing unreacted pyrite for recycle to the concentrator circuit.

Leaching and Production of Mixed Hydroxide Precipitate

The artificial pyrrhotite is leached in a low-temperature (130°C) and pressure (10–15 bar) autoclave. The resulting leach residue is screened, and the coarse fraction is sent for sulphur recovery by distillation or remelting. The fines fraction is discarded as tails from the process plant. The resulting leach solutions are treated to remove iron, copper and zinc before precipitating the cobalt as a mixed hydroxide (along with nickel and manganese).

In the PFS testwork program, \sim 30 kg of calcine product from the furnace was leached in batches of 250g to 1kg. Variations in the operating conditions were tested, with the best results showing that 97-98% of the cobalt could be leached consistently from the pyrolysis calcine.

Refining of The Mixed Hydroxide Precipitate to Produce Cobalt Sulphate Crystals

In the PFS testwork program, variations on the ion-exchange and solvent extraction circuits were tested. The best conditions resulted in the production of cobalt sulphate heptahydrate grading ~20.5% with total impurities at ~800 ppm copper and 800 ppm manganese. Further optimisation of the parameters for the ion-exchange circuits, is expected to reduce the copper and manganese content reporting to the cobalt sulphate in future testwork.

Estimation of waste sulphur values into the block model has been completed for waste material in order to estimate the component of potentially acid forming material. Sulphur (S) has been estimated in both the Resource and waste material where information is available. A background S value of 0.05% has been included where no assay information is available and where expected lithology types are typically below the 0.05% S value.

The construction of a suitable tailings facility is assumed for storing waste material from the process plant. It is considered a portion of water from such a facility could be recovered for re-use as process water.

Appendix 1 – JORC Code, 2012 Edition – Table 1

Section 1 – Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria JORC Code Explanation Commentary Sampling Nature and quality of sampling **Diamond Drilling** (eg cut channels, random chips, techniques Pre-1990 or specific specialised industry Diamond drilling was used to obtain core from which irregular standard measurement tools intervals, reflecting visual mineralisation and geological logging appropriate to the minerals under were hand-split or sawn. Samples were submitted for analysis investigation, such as down hole using a mixed acid digestion and AAS methodology. gamma sondes, or handheld XRF instruments, etc). These examples Post-1990 should not be taken as limiting the Diamond drilling was used to obtain core from which irregular broad meaning of sampling. intervals, reflecting visual mineralisation and geological logging Include reference to measures were sawn (quarter core for HQ). Samples were submitted for taken to ensure sample analysis using a mixed acid digestion and ICP-OES methodology. representivity and the appropriate 2016-2019 calibration of any measurement Diamond drilling was used to obtain core from which irregular tools or systems used. intervals were sawn with: Aspects of the determination of one guarter - one half core dispatched for assay by mixed mineralisation that are Material to acid digestion and analysis via ICP-MS + ICP-AES reporting the Public Report. a suite of 48 elements (sulphur >10% by LECO); In cases where 'industry standard' the remaining sample (core) was retained for future metallurwork has been done this would gical test work and archival purposes. be relatively simple (eg 'reverse circulation drilling was used to **Reverse Circulation ('RC') Drilling** obtain 1 m samples from which Pre-2017 3 kg was pulverised to produce RC drilling was used to obtain a representative sample by means a 30 g charge for fire assay'). In of riffle splitting with samples submitted for analysis using the other cases more explanation may above-mentioned methodologies. be required, such as where there is coarse gold that has inherent Pre-2000 drill samples were assayed for a small and variable suite of elements (sometimes only cobalt). The post-2000 drill samples sampling problems. Unusual are all assayed by ICP-MS for a suite of 33 elements. commodities or mineralisation types (eg submarine nodules) 2017-2019 may warrant disclosure of detailed RC drilling was used to obtain a representative sample by means information. of a cone or riffle splitter with samples submitted for assay by mixed acid digestion and analysis via ICP-MS + ICP-AES reporting a suite of 48 elements (sulphur >10% by LECO). Drilling Drill type (eg core, reverse The Thackaringa drilling database comprises a total of 68 diamond circulation, open-hole hammer, drill holes, 184 reverse circulation (RC)/percussion drill holes and techniques rotary air blast, auger, Bangka, 21 diamond drill holes with RC/percussion pre-collars of varving sonic, etc) and details (eg core depths. Diamond drilling was predominantly completed with diameter, triple or standard tube, standard diameter, conventional HQ and NQ with historical holes depth of diamond tails, face-samtypically utilising RC and percussion pre-collars to an average 25 pling bit or other type, whether metres (see Drill hole Information for further details). Early (1960core is oriented and if so, by what 1970) drill holes utilised HX – AX diameters dependent on drilling method, etc). depth. Reverse circulation drilling utilised standard hole diameters (4.8"-5.5") with a face sampling hammer. Since 2013 all diamond drilling has been completed using a triple tube system with an NQ3 - HQ3 diameter. Drill holes were typically drilled at angles between 40 and 60 degrees from horizontal and the resulting core was oriented as part of the logging process.

14

Criteria	JORC Code Explanation		С	ommentary		
Drilling techniques (continued)		Year	No. Diamond Holes	No. RC/Percussion Holes	No. RCDD/PDDH Holes	Total
		1967	1	_	_	1
		1970	4	-	_	4
		1980	2	1	16	19
		1993	-	-	2	2
		1998	-	11	-	11
		2011	-	11	-	11
		2012	_	20	-	20
		2013	1	-	-	1
		2016	8	_	-	8
		2017	30	93	3	126
		2018	18	42	-	60
		2019	4	6	-	10
		Total	68	184	21	273
		Year	No. Diamond Metres	No. RC/Percu Metres	ssion Tota	I Metres
		1967	304.2	_		304.2
		1970	496.6	_		496.6
		1980	1,302.85	408.3	8 1,	711.23
		1993	178	72		250
		1998	-	1,093.2	5 1,	093.25
		2011	-	1811	1	811
		2012	-	2,874.2	5 2,	874.25
		2013	349.2	-		349.2
		2016	1,511.8	-	1,	511.8
		2017	4,370	14,563	18,	933
		2018	1919.2	6,314	8,	233.2
		2019	418	904	1,	322
		Total	10,849.85	28,039.8	8 38,	889.73

Drill sample recovery

- Method of recording and assessing core and chip sample recoveries and results assessed.
- Measures taken to maximise sample recovery and ensure representative nature of the samples.
- Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.

Diamond Drilling

- Historical core recoveries were accurately quantified through measurement of actual core recovered versus drilled intervals with drilling utilising conventional drilling techniques.
- From 2013, a triple-tube system was used to maximise sample recovery as summarised below:

Diamond Drilling Campaign	Core Recovery
2013	99.7%
2016	98%
2017	96.7%
2018 - 19	97.7%

No relationship between sample recovery and grade has been observed.

Criteria	JORC Code Explanation			Co	mmentary		
Drill sample		Re	verse Circula	tion ('RC') Dril	ling		
recovery (continued)		•	Reverse circ during drillin was below qualitative o	culation sample ng programs. V 100% this was observation.	e recoveries v Vhere the est recorded in	were visually e imated sampl field logs by n	estimated e recovery neans of
		•	Reverse circ compressor	culation drilling r and booster)	employed su to maximise	ufficient air (us sample recove	ing a ery.
		•	No relations observed.	ship between s	ample recove	ery and grade	has been
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	•	A qualified g entirety. This considered and metallu lithology, alt ters are bot Diamond dr to geotechr rock-quality During 2013 re-logged th as well the p percussion drill holes ar were re-logg	reported drill h ted to a level rral Resource ters logged in oxidation. The re in nature. 16–2018 has h rs recorded in e frequency a of historical dri core stored at al reports whe total of eight II holes with p	noles in their of detail estimation clude ese parame- cluding nd hardness. lling was Broken Hill re core or (8) diamond re-collars		
				Donosit	Max Depth		Pre-Collar
				Deposit	(11)	поте туре	Depui (iii)
			67TH01	Pyrite Hill	304.2	DDH	-
			70BH01	Big Hill	102.7	DDH	-
			70BH02	Big Hill	103.9	DDH	-
			701H02	Pyrite Hill	148.6	DDH	-
			701H03	Pyrite Hill	141.4 E4.00	DDH	
			80BGH05	Big Hill	04.80	PDDH	45.5
			80BGH06	Big Hill	08.04	PDDH	80
					100.5	PDDH	09.9
				Diy Hill Durita Hill	100.0	FDDH	-
					24.00	דטטק	23 59
				Pyrite Hill	55	РООН	38.7
			80PVH05	Pyrito Hill	03 E	PDDH	18
			80PYH06	Pyrite Hill	85.5	PNNH	18
			80PYH07	Pyrite Hill	94.5	PDDH	12
			80PYH08	Pyrite Hill	110	PDDH	8
			80PYH09	Pyrite Hill	100.5	PDDH	8
			80PYH10	Pyrite Hill	145.3	PDDH	25.5
			80PYH11	Pyrite Hill	103.1	PDDH	18
			80PYH12	Pyrite Hill	109.5	PDDH	4.2
			80PYH13	Pyrite Hill	77	DDH	-
			80PYH14	Pyrite Hill	300.3	DDH	-
			93MGM01	Pyrite Hill	70	PDDH	24
			93MGM02	Pyrite Hill	180	PDDH	48
			DDH Diamond	drill hole PDDH	H Diamond drill ho	ole with percussion p	ore-collar
		•	Litho-geoch where availa	nemistry has be able for drilling	een used to completed p	verify geologic post 2010.	al logging
		•	Representa drilling com	tive reference pleted post 20	trays of chips 10 have bee	s from reverse n retained.	circulation

Criteria	JORC Code Explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/ second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Diamond Drilling Pre-1990 Core samples were hand-split or sawn with re-logging of available historical core (see Logging) indicating a 70:30 (retained : assayed) split was typical. The variation of sample ratios noted are considered consistent with the sub-sampling technique (hand-splitting). No second half samples were submitted for analysis. It is considered water used for core cutting is unprocessed and unlikely to have introduced sample contamination. Procedures relating to the definition of the line of cutting or splittin are not available. It is expected that 'standard industry practice' for the period was applied to maximize sample representivity. NO drilling core was sawn with half core submitted for assay. No second half samples were submitted for analysis. It is considered water used for core cutting is unprocessed and unlikely to have introduced sample contamination. Procedures relating to the definition of the line of cutting or splittin are not available. It is expected that 'standard industry practice' for the period was applied to maximise sample representivity. Drocedures relating to the definition of the line of cutting or splittin are not available. It is expected that 'standard industry practice' for the period was applied to maximise sample representivity. Drocedures relating to the definition of the line of archive and further metallurgical test work. It is considered that the water used for core cutting is most unlikely to have introduced sample contamination. Sample sawing and processing for test work were undertaken according to 'standard industry practice' for the period. Sample sampling of reverse circulation chips is expected to have been 'standard

During reverse circulation drilling completed in 2017, duplicate samples were collected at the time of drilling at an average rate of 1:23 samples. These were obtained by riffle splitting the remnant bulk sample following collection of the primary split.

 Assay results include analysis of 630 field duplicate pairs from 96 RC and 3 RCDDH drill holes.

Criteria	JORC Code Explanation			Co	ommentary			
Sub-sampling techniques and sample preparation (continued)		•	A measure of the average precision of the sampling, sample preparation and assaying methods, given by the mean per cent difference (MPD) assay values of the duplicate pairs is summarised below. Overall, the sampling and assay precision for Co, Fe and S at economically significant grades is regarded as reasonable.					
			Co Cut-Off	Sample Count	Cobalt MPD	Sulphur MPD	Iron MPD	
			All	630	12%	14%	8%	
			500 ppm	170	10%	10%	7%	
		20	18-2019					
		 During reverse circulation drilling completed in 2018 - duplicate samples were collected at the time of drilling average rate of 1:18 samples. These were obtained in with collection of the primary split by means of a cone 						
		 Assay results include analysis of 398 field duplicate p 48 RC drill holes. 						
		•	 A measure of the average precision of the sampling, sa preparation and assaying methods, given by the mean cent difference (MPD) assay values of the duplicate pa summarised below. Overall, the sampling and assay pa Co, Fe and S at economically significant grades is rega reasonable. 					
			Co Cut-Off	Sample Count	Cobalt MPD	Sulphur MPD	Iron MPD	
			All	398	11%	13%	7%	
			500 ppm	87	10%	10%	8%	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, 	•	The nature an employed for reverse circula respective per The assay teo circulation) ind ICP-MS and A appropriate for total' digestion affect cobalt a	d quality of samples ob ation) are co riods. chniques em clude mixed VAS finishes or the targete n technique analysis.	all assaying and tained through nsidered 'indus ployed for drillir acid digestion v . These method ed mineralisatio with resistive pl	d laboratory drilling (diam try standard mg (diamond with ICP-OE ds are consic n and regard hases not ex	procedures ond and ' for the and reverse S, ICP-AES, lered ded as a 'near spected to	

 All samples have been processed at independent commercial laboratories including AMDEL, Australian Laboratory Services (ALS), Analabs and Genalysis.

2011-2012

reading times, calibrations factors

applied and their derivation, etc.

Nature of quality control proce-

dures adopted (eg standards,

acceptable levels of accuracy (ie

lack of bias) and precision have

blanks, duplicates, external laboratory checks) and whether

been established.

All samples from drilling completed during 2011–2012 were assayed at ALS in Orange, New South Wales. All samples from drilling completed during 2016-2019 were processed at ALS Adelaide, South Australia. ALS is a NATA Accredited Laboratory and qualifies for JAS/ANZ ISO9001:2008 quality systems. ALS also maintains internal QAQC procedures (including analysis of standards, repeats and blanks).

2016-2017

To monitor the accuracy of assay results from the 2016–2017 Thackaringa drilling, CRM standards were included in the assay sample stream at an average rate of 1:24. The CRM samples were purchased from Ore Research & Exploration Pty Ltd with results summarised below:

Criteria Quality of assay data and laboratory tests

(continued)

			Cobalt				Sul	ohur		Iron			
Standard ID	Count	1SD	2SD	3SD	+3SD	1SD	2SD	3SD	+3SD	1SD	2SD	3SD	+3SD
OREAS523 (728 ppm Co)	72	59	12	1	_	61	11	_	_	53	18	1	_
OREAS521 (386 ppm Co)	61	49	10	1	1	50	10	1	_	53	7	1	_
OREAS166 (1970 ppm Co)	128	103	24	_	1	19	22	19	68	67	7	52	2
OREAS165 (2445 ppm Co)	120	102	17	_	1	15	36	38	31	74	38	7	1
OREAS163 (230 ppm Co)	140	110	25	4	1	4	6	14	116	23	91	24	2
OREAS162 (631 ppm Co)	152	114	33	5	_	32	41	33	46	108	37	7	_
OREAS160 (2.8 ppm Co)	121	104	10	2	5	40	49	30	2	83	_	_	38

Commentary

 Internal lab standards were routinely included by ALS Laboratories during the 2017 drilling program. The Thackaringa drilling database includes the lab standards for all drilling completed from October 2017 at an average rate of 1:6 samples.

			Cobalt				Sulp	ohur		Iron			
Standard ID	Count	1SD	2SD	3SD	+3SD	1SD	2SD	3SD	+3SD	1SD	2SD	3SD	+3SD
OREAS902 (926 ppm Co)	125	39	51	28	7	86	31	8	_	114	11	_	_
OREAS601 (5.14 ppm Co)	220	199	15	4	2	182	35	3	_	197	23	_	_
OREAS24b (16.9 ppm Co)	439	288	142	8	1	382	27	30	_	282	123	31	3
OGGeo08 (100 ppm Co)	219	152	63	4	_	202	17	_	_	208	11	_	_
MRGeo08 (19.5 ppm Co)	222	172	47	2	1	18	52	99	53	144	78	_	_
GBM915-8 (1082 ppm Co)	127	110	17	_	_	_	_	_	_	_	_	_	_
GBM908-10 (27 ppm Co)	223	222	_	1	_	_	_	_	_	_	_	_	_

Lab repeats were routinely completed by ALS Laboratories during the 2017 drilling program. The Thackaringa drilling database includes the repeat assays for all drilling completed from October 2017 at an average rate of 1:16 samples for a total of 715 repeat pairs. A measure of the average precision of the sampling, sample preparation and assaying methods, given by the mean per cent difference (MPD) assay values of lab repeats is summarised below.

 Overall, the sampling and assay precision for Co, Fe and S at economically significant grades is regarded as reasonable.

Co Cut-Off	Sample Count	Cobalt MPD	Sulphur MPD	Iron MPD
All	715 (637) ¹	3%	3%	2%
500 ppm	179 (102)1	2%	2%	2%

1 Sulphur analysis for lab repeats were, in part, affected by the upper detection limits (10%) of the assay technique. These results have been excluded from the above analysis.

2018-2019

To monitor the accuracy of assay results from the 2018 – 2019 Thackaringa drilling, CRM standards were
included in the assay sample stream at an average rate of 1:19. The CRM samples were purchased from
Ore Research & Exploration Pty Ltd with results summarised below:

Criteria Quality of assay data and laboratory tests

(continued)

			Cobalt				Sulp	ohur		Iron			
Standard ID	Count	1SD	2SD	3SD	+3SD	1SD	2SD	3SD	+3SD	1SD	2SD	3SD	+3SD
OREAS523 (728 ppm Co)	65	43	20	1	1	49	14	1	1	51	13	-	1
OREAS521 (386 ppm Co)	67	53	13	1	-	64	3	-	-	55	12	-	-
OREAS166 (1970 ppm Co)	79	64	15	-	-	1	5	1	721	16	22	15	26
OREAS165 (2445 ppm Co)	81	74	6	1	-	47	33	-	1	15	26	28	12
OREAS163 (230 ppm Co)	63	52	11	-	-	12	41	9	1	14	25	19	5
OREAS162 (631 ppm Co)	49	42	7	-	-	31	16	2	-	12	12	9	16
OREAS160 (2.8 ppm Co)	58	52	3	2	1	45	-	-	13	32	21	3	2

Commentary

 Internal lab standards were routinely included by ALS Laboratories during the 2018–2019 drilling program at an average rate of 1:5 samples.

		Cobalt					Sulp	ohur		Iron			
Standard ID	Count	1SD	2SD	3SD	+3SD	1SD	2SD	3SD	+3SD	1SD	2SD	3SD	+3SD
OREAS 76a	6					6	-	-	-				
OREAS 905 (14.8 ppm Co)	162	123	37	2	-	132	_	23	7	137	24	1	_
OREAS 902 (926 ppm Co)	160	62	55	29	14	91	54	15	_	128	32	_	_
OREAS 601 (5.14 ppm Co)	17	14	2	_	1	11	6	_	_	17	_	_	_
OREAS 24b (16.9 ppm Co)	374	250	120	4	_	327	12	31	4	241	117	16	_
OGGeo08 (100 ppm Co)	183	65	90	28	_	164	19	_	-	172	11	_	_
MRGeo08 (19.5 ppm Co)	198	152	40	5	1	6	46	77	69	116	81	1	_
GS910-4	72					72	-	-	-				
GS310-8	54					54	-	-	-				
GS303-2	171					170	1	-	-				
GBM915-8 (1083 ppm Co)	147	130	15	2	-								
GBM908-10 (27 ppm Co)	198	197	1	_	_								
CCU-1e	36					6	4	12	14				

Lab repeats were routinely completed by ALS Laboratories during the 2018 - 2019 drilling program at an average rate of 1:19 samples for a total of 468 repeat pairs. A measure of the average precision of the sampling, sample preparation and assaying methods, given by the mean per cent difference (MPD) assay values of lab repeats is summarised below.

 Overall, the sampling and assay precision for Co, Fe and S at economically significant grades is regarded as reasonable.

Co Cut-Off	Sample Count	Cobalt MPD	Sulphur MPD	Iron MPD
All	468 (403) ¹	3%	4%	2%
500 ppm	104 (39)1	2%	2%	2%

1 Sulphur analysis for lab repeats were, in part, affected by the upper detection limits (10%) of the assay technique. These results have been excluded from the above analysis.

Criteria	JORC Code Explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data 	 Historical drilling intersections were internally verified by personnel employed by previous explorers including CRAE Pty Limited, Central Austin Pty Limited and Hunter Resources. Broken Hill Prospecting completed a systematic review of the related data. The Thackaringa drilling database exists in electronic form under
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay 	the independent management of Maxwell GeoServices. The Maxwell Data Schema (MDS) strictly applies integrity rules to all downhole and measurement recordings. If data fails the integrity rules, the data is not loaded into the database. The MDS stores every instance (record) of data loading and data modification
	data.	inclusive of who loaded and modified that data.
		 Historical drilling data available in electronic form has been re-formatted and imported into the drilling database. Quantitative historical drilling data, including assays, have been captured electronically during systematic data compilation and validation completed by Broken Hill Prospecting.
		 Samples returning assays below detection limits are assigned half detection limit values in the database.
		 All significant intersections are verified by the Company's Exploration Manager and an alternative Company representative.
		 No drill holes were twinned during the 2018 – 19 drilling program.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Minaral Desauras activations 	 Historical drill collars have been relocated and surveyed using a differential GPS (DGPS). In the instances where no collar could be located the position has been derived from georeferenced historical plans.
	 Workings and other locations Used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of 	 Down hole surveys using digital cameras were completed on all drilling post 2000. Down hole surveys for some earlier drilling were estimated from hole trace and section data where raw survey data was not reported.
	topographic control.	 All 2016–2019 drill hole collars were located and surveyed with DGPS by an independent surveyor with reported accuracy of ±0.05m in horizontal and vertical measurement.
		 Downhole surveys using digital cameras were completed for all 2016–2019 drill-holes.
		• All data is recorded in the GDA94 datum; UTM Zone 54 (MGA54).
		 3D validation of drilling data has been completed to support detailed geological modelling in Micromine[™] software.
		 The quality of topographic control is deemed adequate for the purposes of the Mineral Resource estimate.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for 	 The data density of existing drill holes at Thackaringa has been materially increased by the 2016–2018 drilling programs. Drilling density at each deposit varies along strike generally responsive to exploration targeting and interpreted geological complexity with the average drill line spacing for each deposit summarised below: Railway: 25 – 40m
	the Mineral Resource and Ore Reserve estimation procedure(s)	Pyrite Hill: 30 – 40m
	and classifications applied.	 Big Hill: 40 – 60m Detailed geological mapping is supported by drill-bole data of
	 Whether sample compositing has been applied. 	sufficient spacing and distribution to complete a 3D geological modelling and Mineral Resource estimation
		• No sample compositing has been applied to reported intersections.

21

Criteria	JORC Code Explanation	Commentary	
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes at the Thackaringa project are typically angled at -5 -60° to the horizontal and drilled perpendicular to the mineralis trend. Drilling orientations are adjusted along strike to accommodate folded geological sequences. Mineralisation at the Big Hill and Railway prospects is steeply dipping and consequently mineralised intersections will be grathan true width. At Pyrite Hill mineralisation is gently dipping a mineralised intersections will be close to true width. The drilling orientation is not considered to have introduced a sampling bias on assessment of the current geological interpretation. 	55° or sed e eater and
Sample security	 The measures taken to ensure sample security. 	 Sample security procedures are considered to be 'industry standard' for the respective periods Samples obtained during drilling completed between 2016 - 2 were transported by an independent courier directly from Brol Hill to ALS, Adelaide. The Company considers that risks associated with sample se are limited given the nature of the targeted mineralisation. 	2019 ken curity
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 In late 2016 an independent validation of the Thackaringa drill database was completed: The data validation process consisted of systematic revi 	ing
		drilling data (collars, assays and surveys) for identification transcription errors.	n of
		 Following review, historical drill hole locations were also validated against georeferenced historical maps to confir their location. 	m
		Three (3) drill holes at Big Hill were found to be incorrectl located. One collar was located and surveyed by GPS and two were digitised from georeferenced historical plan (reported to the nearest metre) as the collars had been destroyed. These corrections were captured in the Big H Mineral Resource estimate.	ly ns till
		 Total depths for all holes were checked against original reports 	
		 Final 3D validation of drilling data has been completed by independent geological consultants to support detailed geological modelling in Micromine™ software. 	У
		 Audits and reviews of QAQC results and procedures are furthedescribed in preceding sections of this table including Quality assay data and laboratory tests, Sub-sampling technique and sample preparation and Logging. 	er / of s

22

Section 2 - Reporting of Exploration Results

Criteria	JORC Code Explanation	Commentary							
Mineral tenement and land tenure	 Type, reference name/number, location and ownership including agreements or material issues with 	•	The Thackaringa (kilometres west-se exploration (EL) ar	Cobalt project is located ap outhwest of Broken Hill and nd two mining leases (ML) ir	proximately 25 comprises two ncluding:				
status	third parties such as joint ventures, partnerships, overriding royalties,		Tenement	Grant Date	Expiry Date				
	native title interests, historical sites,		EL6622	30/08/2006	30/08/2020				
	 partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 		EL8143	26/07/2013	26/07/2020				
	 wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 		ML86	05/11/1975	05/11/2022				
	the time of reporting along with any		ML87	05/11/1975	05/11/2022				
	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 		The project is sub and Broken Hill Pr on 18 February 20 Venture Interests, interest had fallen in the joint venture below the Minimu from the Joint Ver it to surrender abs BPL announced of claims and initiate The dispute has y beneficial interest	ject to a joint venture agree rospecting Limited (ASX: BF D19 that following a recalcul BPL had been advised that to below 5%, the Minimum e agreement. As a result of f m Interest, BPL was deementure. COB issued to BPL a solutely all of its Joint Ventur on 26 February 2019 that the d a Dispute Notice in regard to be resolved. COB belin in the tenements below:	ment between COB PL). COB announced ation of Joint : its Joint Venture Interest specified BPL's interest falling ed to have withdrawn notice requesting re Interest to COB. ey rejected COB's d to the matter. eves it has a 100%				
			 FL 6622 						
			 EL8143 						
			ML86						
			 ML87 						
		•	The nearest reside three kilometres w	nce (Thackaringa Station) is l vest of EL6622.	located approximately				
					•	EL6622 is transec Highway is located	cted by the Transcontinental d the north of the licence bo	Railway; the Barrier Dundaries.	
		•	The majority of the Lease which is co However, Native T Traditional Owners to Crown Land pa	project tenure is covered by Western Lands nsidered to extinguish native title interest. tle Determination NC97/32 (Barkandji 8) is current over the area and may be relevances (e.g. public roads) within the project are					
		•	The project tenure National Park and and approximately Reserve (Umberur	The project tenure is more than 90 kilometres from the nearest National Park and or Wilderness Area (Kinchega National Park) and approximately 20 kilometres south of the nearest Water Supply Reserve (Umberumberka Beservoir Water Supply Beserve)					
		•	The Company is r a licence to opera	not aware of any impedimen te in the area.	nts to obtaining				
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	•	A detailed and cor undertaken prior to the JORC Table 1 available on the C	mplete record of all explorat o the BPL 2016 drilling prog which forms part of the Col OB website.	ion activities gram is appended to balt Blue Prospectus				
Geology	 Deposit type, geological setting 	Re	gional Geological Se	etting					
	and style of mineralisation	•	The Thackaringa p phosed Proterozo Supergroup, whicl South Wales, inclu	project is located in a deform ic supracrustal succession r h is exposed as several inlie uding the Broken Hill Block (ned and metamor- named the Willyama rs in western New Willis, et al., 1982).				
		•	Exploration by Col the discovery and	balt Blue Holdings Limited h definition of cobaltiferous p	nas been focused on yrite deposits				

Criteria	JORC Code Explanation	Commentary
Geology (continued)		 The project area covers portions of the Broken Hill and Thackaringa group successions which host the majority of mineralisation in the region, including the Broken Hill base metal deposit. The Sundown Group suite is also present. The extensive sequence of quartz-albite-plagioclase rock that hosts the cobaltiferous pyrite mineralisation is interpreted as belonging to the Himalaya Formation, which is stratigraphically at the top of the Thackaringa Group.
		Local Geological Setting
		 The oldest rocks in the region belong to the Curnamona Craton which outcrops on the Broken Hill and Euriowie blocks.
		The overlying Proterozoic rocks have been broadly subdivided into three major groupings, of which the oldest groups are the highly deformed metasediments and igneous derived rocks of the Thackaringa and Broken Hill groups. They comprise a major part of the Willyama Supergroup and host the giant Broken Hill massive Pb-Zn-Ag sulphide ore body. EL6622 is within the Broken Hill block of the Curnamona Craton.
		Mineralisation Style
		 The Thackaringa mineral deposits (Pyrite Hill, Big Hill and Railway) are characterised by large tonnage cobaltiferous pyrite minerali- sation hosted within siliceous albitic gneisses and schists of the Himalaya Formation.
		 Cobalt mineralisation exists within extensive pyritic horizons where cobalt is present within the pyrite lattice. Mineralogical studies have indicated the majority of cobalt (~85%) is found in solid solution with primary pyrite (Henley 1998).
		 A strong correlation between pyrite content and cobalt grade is observed.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabu- lation of the following information for all Material drill holes: 	 Drill Hole information tables are shown on the next pages.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in 	
	metres) of the drill hole collar	
	 dip and azimuth of the hole 	
	 down hole length and interception depth 	
	hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	

Criteria					Commentar	у				
Drill hole Information	Hole ID	Hole Type	Grid ID	Easting	Northing	RL	Max Depth (m)	Deposit	Dip	Azimuth
(continued)	11PHR01	RC	MGA94 54	518435.47	6449072.76	285.34	150	Pvrite Hill	-60	278.6
	11PHR02	RC	 MGA94_54	518499.92	6449159.31	283.79	198	Pvrite Hill	-60	278.6
	11PHR03	RC	MGA94 54	518560.3	6449189.61	280.26	240	Pvrite Hill	-60	278.6
	11PHR04	RC	 MGA94 54	518528.63	6449257	284.03	186	Pyrite Hill	-60	278.6
	11PHR05	RC	 MGA94 54	518584.25	6449397.62	280.22	234	Pyrite Hill	-60	258.6
	11PHR06	RC	 MGA94 54	518490.9	6449522.59	284.02	180	Pyrite Hill	-60	233.6
	11PHR07	RC	MGA94_54	518413.47	6449592.9	282.86	174	Pyrite Hill	-60	218.6
	11PHR08	RC	MGA94_54	518342.74	6449655.85	282.88	180	Pyrite Hill	-60	217.6
	11PSR01	RC	MGA94_54	518742.73	6448864	268.38	59	Pyrite Hill	-60	257.6
	11PSR02	RC	MGA94 54	518719.38	6448960.01	270.41	132	Pyrite Hill	-60	254.6
	11PSR03	RC	MGA94_54	518686.99	6449055.35	272.79	78	Pyrite Hill	-60	254.6
	12BER01	RC		521667.31	6449893.23	277.69	157	Railway	-60	140.6
	12BER02	RC	MGA94 54	521212.67	6449690.67	273.53	132	Railway	-60	161.6
	12BER03	RC	 MGA94 54	521879.01	6450435.47	288.59	151	Railway	-60	101.6
	12BER04	RC	 MGA94_54	522353.92	6451268.35	274.35	148	Railway	-60	130.6
	12BER05	RC	 MGA94 54	522439.47	6451167.84	299.73	145	Railway	-60	123.6
	12BER06	RC	MGA94 54	522481.37	6451091.35	295.95	169	Railway	-60	126.6
	12BER07	RC	MGA94 54	522323.72	6450748.75	277.91	115	Railway	-60	143.6
	12BER08	RC	MGA94 54	522220.79	6450811.8	273.16	193	Railway	-60	128.6
	12BER09	RC	MGA94 54	522101.25	6450881.44	275.91	139.75	Railway	-60	128.6
	12BER10	RC	MGA94 54	521953.45	6450716.18	284.49	151	Railway	-60	128.6
	12BER11	RC	MGA94 54	522737.22	6451376.61	265.83	193	Railway	-60	152.6
	12BER12	RC	MGA94 54	522909.73	6451516.76	277.36	111	Railway	-60	152.6
	12BER13	RC	MGA94 54	522883.81	6451557.54	271.03	205	Railway	-60	155.6
	12BER14	RC	MGA94 54	523124.83	6451637.07	288.36	151	Railway	-60	151.6
	12BER15	RC	MGA94 54	523311.3	6451841.7	283.95	109	Railway	-60	153.6
	12BER16	RC	MGA94 54	522994.08	6451591.99	275.95	115	Railway	-60	155.6
	12BER17	RC	MGA94 54	522516.5	6451314.94	269.1	115.5	Railway	-60	152.6
	12BER18	RC	MGA94 54	522332.75	6451281.31	272.29	157	Railway	-60	128.6
	12BER19	RC	MGA94 54	522240.55	6451067.15	276.16	97	Railway	-60	134.6
	12BER20	RC	MGA94 54	521291.69	6449733.63	276.95	120	Railway	-60	164.6
	13BED01	DDH	MGA94 54	522480.21	6451092.43	296.01	349.2	Railway	-60	300.3
	16DM01	DDH	MGA94 54	518411.38	6449593.89	282.69	161.6	Pvrite Hill	-60	215.4
	16DM02	DDH	MGA94 54	518526.62	6449261.58	284.18	183.4	Pvrite Hill	-60	284.9
	16DM03	DDH	MGA94 54	521037.1	6449567.49	283.01	126.5	Big Hill	-60	158.4
	16DM04	DDH	MGA94 54	520814.74	6449464.4	296.18	105.4	Big Hill	-55	128.4
	16DM05	DDH	 MGA94_54	522103.7	6450881.87	276.62	246.5	Railway	-60	128.4
	16DM06	DDH	MGA94 54	522911.57	6451519.13	278.5	160.4	Railway	-60	152.4
	16DM07	DDH	 MGA94_54	522995.26	6451598.26	276.36	242.5	Railway	-60	156
	16DM08	DDH	 MGA94 54	522351.45	6451273.07	273.85	285.5	Railway	-60	130.8
	17THD01	DDH	MGA94 54	518381.92	6449551.01	289.06	124.2	Pvrite Hill	-40	221.9
	17THD015	DDH	 MGA94 54	522037.9	6450826.2	279.21	81.6	Railway	-80	304
	17THD016	DDH	MGA94 54	522088.63	6450773.65	286.96	176.9	Railwav	-70	122
	17THD017	DDH	MGA94 54	522614.75	6451278.72	267.55	255.9	Railwav	-80	350
	17THD018	DDH	MGA94 54	523013.19	6451490.72	295.02	72.5	Railwav	-70	150
	17THD019	DDH	MGA94 54	522667.34	6451229.21	267.14	151.3	Railway	-70	140
	17THD02	DDH	MGA94 54	518475.49	6449444.54	290.54	149.7	Pyrite Hill	-40	257.9
	17THD020	DDH	MGA94 54	523051.58	6451545.21	289.51	121.7	Railwav	-55	310
	17THD021	DDH		521708.23	6449927.85	280.69	100	Big Hill	-50	133
			- 1					0		

Criteria					Commentar	У				
Drill hole Information	Hole ID	Hole Type	Grid ID	Easting	Northing	RL	Max Depth (m)	Deposit	Dip	Azimuth
(continued)	17THD022	DDH	MGA94 54	521617.69	6449728.5	277.62	70	Big Hill	-56	316
	17THD023	DDH	MGA94 54	521163.79	6449536.89	275.38	99.5	Big Hill	-55	337
	17THD024	DDH	MGA94 54	521164.19	6449535.73	275.43	69.6	Big Hill	-80	150
	17THD026	DDH	MGA94_54	518586.33	6449333.82	281.21	240.7	Pvrite Hill	-55	272
	17THD027	DDH	MGA94_54	520946.6	6449512.66	293 55	141.6	Big Hill	-75	130
	17THD028	חממ	MGA94 54	520861.99	6449317 24	285.06	171.7	Big Hill	-56	321
	17THD020	DDH	MGA94 54	518489.32	6449338.05	290.32	200.5	Pyrite Hill	-70	90
	17THD03	DDH	MGA94 54	518369.98	6449189.6	303.28	78.5	Pyrite Hill	-40	285
	17THD030	DDH	MGA94 54	518350.8	6449706.09	280.69	201.5	Pyrite Hill	-55	222
	17THD031	ррн	MGA94 54	518289.35	6449629.06	286.67	229	Pyrite Hill	-65	50
	17THD04	DDH	MGA94 54	521077 95	6449589.47	278 41	119.8	Big Hill	-45	155
	17THD05	пон	MGA94 54	521669.07	6449888 58	278.5	99.5	Big Hill	-40	130.9
	17THD06	ррн	ΜGΔ94_54	521060.07	6450704.86	287.2	165.5	Bailway	-45	127.9
	17THD07	חסס	ΜGΔ94_54	522568 957	6451282 23	270.67	274.6	Railway	-45	156.4
	17THD07	ррн	MGA04_54	522783 808	6451280 456	268 881	138.1	Railway	-45	325.0
		חוסס	MCA04_54	522004 027	6451510,600	200.001	120.5	Pailway	-40	152.9
	17THD10	חוסס	MCA04_54	522002.007	6451568 856	270.471	84.2	Railway	-40	120.0
		ווסס	MCA04_54	522332.007	6451601 041	219.119	111.5	Dailway	-40	160.4
	17THD12	חותם	MGA04_54	522706 17	6451418 63	200.047	126.5	Railway	-40	140.65
		וועט	MCA04_54	522790.17	6451416.03	272.930	105.5	Pailway	-40	120 /
	1711013		MCA04_54	510075 000	6440089 621	210.141	00	Durito Hill	-40	204.0
				500614.005	6451076 766	294.20	156		-00	204.9
			MCA04_54	522014.900	6451200 901	207.001	160	Pailway	-00	110.0
	17THR002	RC RC	MCA04_54	522373.203	6450867.044	200.311	00	Railway	-00	120.0
			MCA04_54	500006 001	6451210.044	271.39	150	Pailway	-00	129.9
	17THR005		MGA04_54	52200.091	6450783 074	282 154	70	Railway	-00	110.0
		DC	MCA04_54	522024.30	6450780.22	202.134	11/	Pailway	-00	124.0
			MCA04_54	52106/ 852	6450600 403	204.01	180	Railway	-50	124.9
	17THR007	RC RC	MCA04_54	521016 600	6450562 283	200.000	122	Railway	-59	104.9
		DC	MCA04_54	521006 401	6450405 509	201.002	100	Pailway	-50	104.9
	17THR010	RC RC	MCA04_54	521058 872	6450307.007	292.751	72	Railway	-50	284.0
	17THR011	RC RC	MCA04_54	522301 7/1	6451168 608	200.443	126	Railway	-56	110.0
	17THR012	RC RC	MCA04_54	522440.265	6451204 371	270.012	120	Railway	-50	172.0
	17THR012	RC RC	MCA04_54	521740.205	6440041 667	214.931	100	Rig Hill	-50	120.4
	17THR017	RC	MGAQ4_54	521627 785	6449941.007	204.09	102	Big Hill	-00	120.4
	17THR015	RC	MCA04_54	521702 560	6440017 51	284 847	104	Big Hill	-58	200.0
			MCA04_54	510//5 67	6440209 824	204.047	120	Diy Hill Durito Hill	-30	209.9
	17THR017	RC RC	MCA04_54	518//8 8/6	6449200.024	200.001	120	Dyrito Hill	-56	202.9
		DC	MCA04_54	510007 000	6440202.392	293.147	70	Durito Hill	-30	201.4
			MCA04_54	51010/ 062	64498003.013	209.007	70	Durito Hill	-00	221.9
	17110019		MCA04_54	510104.005	6449753.022	207.701	12	Durito Hill	-00	221.9
				510100.002	6449094.733	200.000	70	Pyrite Hill	-00	221.9
		nu po		518510.064	6440206 227	200.007	10		-00	221.9
			MCA04 54	510500.204	6440076 605	200.02	150		-00 E7	200.9
		nu PC		518457 102	6449370.000	209.401	150		-07	204.4
			MCA04_54	510210 00	0449490.100	200.13/	114	Pyrite Hill	-09.0	220.4
			MGA04_54	510000 100	6440690 000	207.403	114	F yrite Hill Dwrite Lill	-00	221.9
			MCA04_54	510200.199	6449080.832	204.104	70	Pyrite Hill	-00	221.9
		nU DC		510242.741	0449040.017	201.170	12		-00	221.9
	171HKU28	КÜ	WGA94_54	522457.367	0451106.573	300.659	150	канway	-bU	349.9

Criteria						Co	ommentary			
Drill hole nformation	Hole ID	Hole Type	Grid ID	Easting	Northing	RL	Max Depth (m)	Deposit	Dip	Azimuth
'continued)	17THR029	RC	MGA94_54	522481.824	6451084.489	295.964	162	Railway	-60	174.9
	17THR030	RC	MGA94_54	522782.694	6451422.506	270.814	138	Railway	-55	139.9
	17THR031	RC	MGA94_54	522945.084	6451565.894	276.19	120	Railway	-55	144.9
	17THR032	RC	MGA94_54	522819.135	6451472.852	273.712	132	Railway	-53	139.9
	17THR033	RC	MGA94_54	522501.43	6451314.769	269.63	120	Railway	-60	174.9
	17THR034	RC	MGA94_54	522320.672	6451213.859	275.947	132	Railway	-55	126.9
	17THR035	RC	MGA94_54	522259.009	6451120.224	275.749	156	Railway	-55.2	129.9
	17THR036	RC	MGA94_54	522185.924	6450998.472	275.339	92	Railway	-61.2	129.9
	17THR037	RC	MGA94_54	522148.24	6450941.485	274.202	126	Railway	-55	125.9
	17THR038	RC		521926.706	6450619.128	289.555	168	Railway	-55	107.9
	17THR039	RC	MGA94_54	522477.26	6451299.1	273.56	210	Railway	-55.8	168.7
	17THR040	RC	MGA94 54	522528.39	6451299.76	270.47	276	Railway	-55	164
	17THR041	RC	MGA94 54	522692.02	6451243.72	265.1	210	Railway	-55	339
	17THR042	RC	 MGA94 54	522587.82	6451160.13	282.86	234	Railway	-55	336
	17THR043	RC		522530.75	6451184.79	289.25	200	Railway	-55	341
	17THR044	RC	MGA94 54	522419.53	6451159.4	297.98	180	Railway	-55	311
	17THR045	RC	MGA94 54	522526.35	6451168.39	290.07	210	Railway	-55	311
	17THB046	RC	MGA94 54	522500.76	6451202.92	290.5	216	Railway	-56	311
	17THR047	RC	MGA94 54	522437.58	6451115.13	296.5	246	Railway	-55	311
	17THR048	RC	MGA94_54	522480.92	6451123.99	297.74	122	Railway	-55	310
	17THR049	BC	MGA94_54	522378 17	6451130 49	292.05	138	Bailway	-55	310
	17THR050	RC	MGA94 54	522656.53	6451143.01	274.37	154	Bailway	-63	344
	17THR051	RC	MGA94_54	522363.94	6451070.31	282.59	174	Railway	-55	304
	17THB052	RC	MGA94_54	522641.6	6451183.73	274.47	246	Railway	-60	318
	17THR053	RC	MGA94_54	522314.92	6451027.72	278.16	156	Railway	-50	291
	17THR054	RC	MGA94_54	522671.16	6451231.98	266.64	180	Railway	-60	148
	17THR055	RC	MGA94_54	522260.58	6450986.64	278.21	114	Railway	-55	308
	17THR056	RC	MGA94_54	522558.34	6451284.89	270.77	102	Railway	-55	334
	17THR057	RC	MGA94 54	522220.16	6450908.66	274.24	111	Bailway	-55	314
	17THR058	RC	MGA94_54	522466.73	6451328.16	269.82	210	Bailway	-60	333
	17THR059	RC	MGA94_54	522197.7	6450857.19	273.73	150	Bailway	-55	313
	17THR060	RC	MGA94_54	523005.75	6451494.2	294.07	181	Bailway	-55	158
	17THR061	BC	MGA94_54	522161.2	6450788 69	277.36	138	Bailway	-55	308
	17THR062	RC	MGA94 54	522982.99	6451450.49	295.85	168	Bailway	-55	160
	17THR064	RC	MGA94_54	522930.84	6451402.69	294.56	171	Bailway	-55	306
	17THR065	BC	MGA94_54	522108 14	6450664.31	282 78	174	Bailway	-55	331
	17THR066	BC	MGA94_54	522865.27	6451366.56	291.59	168	Bailway	-55	307
	17THR067	RC	MGA94_54	522022.35	6450479.25	283.66	150	Bailway	-60	327
	17THR068	BC	MGA94_54	522751.9	6451407.39	267.7	210	Bailway	-56 1	329
	17THR069	RC	MGA94_54	522008.3	6450647.2	301.3	96	Bailway	-60	117
	17THR070	RC	MGA94 54	522812.63	6451242.07	266.32	228	Railway	-60	300
	17THR071	RC	MGA94 54	522070.4	6450845.81	278 55	142	Bailway	-60	130
	17THR074	RC.	ΜGΔ94_54	522571.68	6450984 72	271.16	300	Railway	-60	310
	17THR075	RC	MCA04_54	522012.61	6450770.25	271.10	1/18	Pailway	-00	101
		RC	MGAQ4_54	522012.01	6450044.02	202.0	300	Railway	-00	355
	17THR077	RC	MGAQ4_04	521002 20	64507/2 21	284.64	120	Railway	-55	117
		PC		512010 0	61/077/ 2	204.04	157	Durita Hill	-00	117 000
		RC	MGAQ4_54	521012 02	6450506 65	201.20	100	Bailway	-55	116
		RC	MGAQ4_04	518024.25	64/0721 76	200.71	67	Durite Hill	-55	100
	17111000	no	WUA34_04	010024.20	0443701.70	291.00	07	i yine i iii	-00	190

Criteria						Co	ommentary			
Drill hole Information	Hole ID	Hole Type	Grid ID	Easting	Northing	RL	Max Depth (m)	Deposit	Dip	Azimuth
(continued)	17THR081	RC	MGA94_54	522339.79	6451238.8	275.91	184	Railway	-55	125
	17THR082	RC	MGA94_54	517972.33	6449842.18	290.3	67	Pyrite Hill	-55	222
	17THR083	RC	MGA94 54	522365.03	6451282.32	274.2	156	Railway	-55	133
	17THR084	RC	 MGA94 54	518343.3	6449587.53	287.21	97	Pyrite Hill	-55	205
	17THR085	RC	MGA94 54	520878.42	6449522.93	287.41	210	Big Hill	-60	141
	17THR086	RC	MGA94 54	518427.15	6449540.98	286.81	157	Pvrite Hill	-55	218
	17THR087	RC	MGA94 54	518466.29	6449586.59	281.67	181	Pvrite Hill	-60	218
	17THR088	RC	MGA94 54	518392.08	6449633.28	281.8	175	Pvrite Hill	-55	213
	17THR089	RC	 MGA94_54	521571.04	6449709.06	274.02	108	Big Hill	-60	141
	17THR090	RC	MGA94 54	521691.5	6449794.05	284.09	96	Big Hill	-55	312
	17THR091	RC	MGA94 54	518423.7	6449679.07	279.49	211	Pvrite Hill	-55	219
	17THR092	RC	MGA94 54	518300.57	6449660.9	284.51	139	Pvrite Hill	-55	219
	17THR093	RC	MGA94 54	518270.39	6449732.39	281.48	151	Pvrite Hill	-55	219
	17THR094	RC	MGA94 54	518568.37	6449501.3	279.13	240	Pvrite Hill	-60	253
	17THR095	BC	MGA94_54	518509.1	6449194 19	283.43	205	Pyrite Hill	-55	273
	17THR096	BC	MGA94_54	518539.91	6449418.96	283.92	187	Pyrite Hill	-60	257
	17TRD063	BCDD	MGA94_54	522137 49	6450724 64	279.94	169.5	Bailway	-55	305
	17TRD072	BCDD	MGA94_54	522622.9	6451044.3	270.7	210	Bailway	-60	320
	17TRD072	BCDD	MGA94_54	522035 27	6450817.14	279.65	195.4	Bailway	-55	126
	18THD001	ПОВВ	MGA94_54	518219.66	6449624.39	291 25	30.9	Pvrite Hill	-60	226
	18THD002	ЛЛ	MGA94 54	518238.34	6449585.82	296.53	54.9	Pyrite Hill	-60	226
	18THD002	ррн	MGA94 54	518240.6	6449583 32	296 57	33.7	Pyrite Hill	-60	316
	18THD000		MGA94_54	518563.05	6449270.02	281 75	210.3	Pyrite Hill	-60	270
	18THD005	ЛЛ	MGA94 54	518097.07	6449782.4	285.94	81.7	Pyrite Hill	-60	226
	18THD006	ррн	MGA94 54	518678.96	6449375 41	277 53	324.3	Pyrite Hill	-60	260
	18THD007	DDH	MGA94_54	518069 73	6449760.09	289.96	63.8	Pyrite Hill	-60	226
	18THD008	ЛЛ	MGA94 54	517942 29	6449795 12	299.01	38.6	Pyrite Hill	-60	226
	18THD009	ррн	MGA94 54	518075.4	6449705.21	299.4	45.8	Pyrite Hill	-60	210
	18THD010	ррн	MGA94 54	517976.88	6449788 42	296 55	39.8	Pyrite Hill	-60	226
	18THD011	ррн	MGA94 54	518009.86	6449756 41	297.48	45.7	Pyrite Hill	-50	226
	18THD012	ррн	MGA94 54	518595.67	6449597.05	276.68	315.7	Pyrite Hill	-60	226
	18THD013	ррн	MGA94 54	518106.83	6449687.25	299.12	42.7	Pyrite Hill	-55	226
	18THD014	ррн	MGA94 54	518145 51	6449664 83	297 29	39.7	Pyrite Hill	-60	226
	18THD015		MGA94 54	518379 27	6449267 6	309.39	60.7	Pyrite Hill	-60	270
	18THD016	ррн	MGA94 54	518367 55	6449227 47	307.37	60.8	Pyrite Hill	-55	270
	18THD017	ллн	MGA94 54	518402 34	6449225.8	300.2	90.8	Pyrite Hill	-60	270
	18THD018		MGA94 54	518478.07	6449819.33	278.07	339.3	Pyrite Hill	-60	226
	18THD019	ррн	MGA94 54	518400.61	6449521.31	292.39	150.6	Pyrite Hill	-53	226
	18THD020	ррн	MGA94 54	518456.96	6449380 78	298.48	132.8	Pyrite Hill	-45	275
	18THD020	лля	MGA94 54	518326.24	6449188.81	212.63	20.3	Pyrite Hill	-90	360
	18THB001	BC	MGA94 54	518559.01	6449231 18	280.96	216	Pyrite Hill	-60	270
	18THR002	BC	MGA04_54	518516.02	6449231.10	283.47	208	Pyrito Hill	-60	270
	18THR002	RC	MGA04_54	518484 17	6440221 88	285 52	162	Pyrite Hill	-60	270
	18THP004	RC	MGA04 54	518/76 /9	61/0122 97	203.30	180	Pyrite Hill	-60	270
		RC	MGA04 55	518//1 66	6//01// 02	200.37	150	Pyrite Hill	-60	270
	18THP006	RC	MGAQ4_00	518360.85	6440505 72	200.01	1//	Pyrito Hill	-60	210
	18THP007	RC	MGA04 54	518547 66	6110205 69	200.40	102	Pyrite Hill	-55	220
		RC	MGA04 54	518342.07	6110625 10	203.41	1//	Pyrite Hill	-50	270
	18THR000	RC	MGA94 54	518569 36	6449408 25	281 08	216	Pyrite Hill	-60	220
	101111009	110	MUA34_34	010003.00	0770700.20	201.00	210		-00	200

Criteria						Co	ommentary			
Drill hole Information	Hole ID	Hole Type	Grid ID	Easting	Northing	RL	Max Depth (m)	Deposit	Dip	Azimuth
(continued)	18THR010	RC	MGA94_54	518532.73	6449360.12	284.92	168	Pyrite Hill	-60	260
	18THR011	RC	MGA94_54	518322.22	6449676.84	283.22	162	Pyrite Hill	-60	226
	18THR012	RC	MGA94_54	518370.03	6449666.15	281.38	174	Pyrite Hill	-60	226
	18THR013	RC	MGA94_54	518298.17	6449706.47	281.98	138	Pyrite Hill	-60	226
	18THR014	RC	MGA94_54	518694.51	6449270.48	276.9	342	Pyrite Hill	-60	270
	18THR015	RC	 MGA94_54	518235.64	6449701.08	283.82	96	Pyrite Hill	-60	226
	18THR016	RC	MGA94 54	518214.75	6449737.47	282.55	102	Pyrite Hill	-60	226
	18THR017	RC	MGA94 54	518127.79	6449754.95	285.64	78	Pvrite Hill	-60	226
	18THR018	RC	 MGA94_54	518137.36	6449716.74	289.22	66	Pyrite Hill	-60	226
	18THR019	RC	MGA94 54	518006.92	6449805.88	291.23	72	Pvrite Hill	-60	226
	18THR020	BC	MGA94 54	518035.63	6449835.82	287.23	96	Pvrite Hill	-60	226
	18THR021	BC	MGA94_54	518087.53	6449721.83	294.28	60	Pvrite Hill	-60	226
	18THR022	BC	MGA94_54	518257 71	6449610 19	290.01	66	Pyrite Hill	-60	226
	18THR023	BC	MGA94 54	518284.04	6449587 56	291 55	102	Pyrite Hill	-60.49	229 15
	18THR024	BC	MGA94 54	518333 33	6449569 57	289.63	114	Pyrite Hill	-50.56	226.59
	18THR025	BC	MGA04_54	518/38 /	6449508.58	203.00	150	Pyrito Hill	-50.50	220.00
		PC		510405 02	6440420 15	200	150	Durito Hill	60	220.20
		PC	MCA04_54	510601 0	6449439.13	200.92	214	Durito Hill	-00	200
		PC	MGA04_54	510/50 51	6449447.29	270.04	120	Pyrito Hill	-00	200
				510450.01	0449370.02	297.90	100		-00	200
	181HRU29	RC	MGA94_54	516455.68	6449353.13	296.54	120	Pyrite Hill	-00	260
	181HR030	RU	MGA94_54	518495.52	6449356.57	290.04	138	Pyrite Hill	-60	260
	181HRU31	RC	MGA94_54	518431.08	6449305.58	298.32	96	Pyrite Hill	-55	270
	18THR032	RC	MGA94_54	518462.16	6449308.34	292.63	126	Pyrite Hill	-60	270
	18THR033	RC	MGA94_54	518518.77	6449639.54	277.94	240	Pyrite Hill	-60	226
	18THR034	RC	MGA94_54	518417.81	6449263.13	299.62	96	Pyrite Hill	-55	270
	18THR035	RC	MGA94_54	518469.09	6449267.21	289.77	132	Pyrite Hill	-60	270
	181HR036	RC	MGA94_54	518432.2	6449181.26	290.8	132	Pyrite Hill	-60	270
	18THR037	RC	MGA94_54	518384.95	6449185.57	298.77	96	Pyrite Hill	-58	270
	18THR038	RC	MGA94_54	518435.94	6449605.44	281.46	186	Pyrite Hill	-60	226
	18THR039	RC	MGA94_54	522031.54	6450775.25	283.21	206	Railway	-60	123
	18THR040	RC	MGA94_54	522057.07	6450757.04	288.93	160	Railway	-60	123
	18THR041	RC	MGA94_54	518497.05	6449723.67	277.9	272	Pyrite Hill	-60	226
	18THR042	RC	MGA94_54	522007.07	6450738.22	286.39	120	Railway	-60	123
	18THR043	RC	MGA94_54	518413.96	6449753	278.56	252	Pyrite Hill	-60	226
	18THR044	RC	MGA94_54	521960.4	6450676.73	289.26	130	Railway	-55	123
	19THD001	DDH	MGA94_54	518287.89	6449592.15	290.54	114.3	Pyrite Hill	-45	188
	19THR001	RC	MGA94_54	523259.12	6451701.45	288.66	84	Railway	-60	138
	19THR002	RC	MGA94_54	518136.22	6449797.05	283.19	132	Pyrite Hill	-60	226
	19THR003	RC	MGA94_54	523272.25	6451773.26	285.29	174	Railway	-55	138
	19THR004	RC	MGA94_54	518077.9	6449858.46	284.14	132	Pyrite Hill	-60	226
	67TH01	DDH	MGA94_54	518564.805	6449460.03	280.643	304.2	Pyrite Hill	-55	261
	70BH01	DDH	MGA94_54	520850.56	6449308.5	284.56	102.7	Big Hill	-47	319
	70BH02	DDH	MGA94_54	520786.12	6449264.4	280.1	103.9	Big Hill	-50	319
	70TH02	DDH	MGA94_54	518272.42	6449680.54	284.08	148.6	Pyrite Hill	-61	219
	70TH03	DDH	MGA94_54	518449.85	6449211.88	289.81	141.4	Pyrite Hill	-62	284
	80BGH05	PDDH	MGA94_54	520955.35	6449534.41	288.93	54.86	Big Hill	-60	163.4
	80BGH06	PDDH	MGA94_54	520880	6449472	299	68.04	Big Hill	-60	170.4
	80BGH07	RC		521136.56	6449599	274.11	23	Big Hill	-60	177.4
	80BGH08	PDDH	MGA94_54	520768.79	6449390.93	296.29	79.7	Big Hill	-60	126.4

Criteria						Co	ommentary			
Drill hole Information	Hole ID	Hole Type	Grid ID	Easting	Northing	RL	Max Depth (m)	Deposit	Dip	Azimuth
(continued)	80BGH09	PDDH	MGA94_54	520657.43	6449292.52	272.8	100.5	Big Hill	-50	144.4
	80PYH01	PDDH	MGA94_54	518246.2	6449565.7	301.1	24.53	Pyrite Hill	-60	202.4
	80PYH02	PDDH	MGA94_54	518260.7	6449574.2	297.6	51.3	Pyrite Hill	-60	220.4
	80PYH03	PDDH	MGA94_54	518251.5	6449569.9	299.4	35	Pyrite Hill	-60	220.4
	80PYH04	PDDH	MGA94_54	518366.55	6449231.74	308.34	55	Pyrite Hill	-60	295.4
	80PYH05	PDDH	MGA94_54	518226.97	6449678.19	285.18	93.6	Pyrite Hill	-49	222.4
	80PYH06	PDDH	MGA94_54	518163.48	6449757.3	283.73	85.5	Pyrite Hill	-54.4	222.4
	80PYH07	PDDH	MGA94_54	518084	6449818.36	285.16	94.5	Pyrite Hill	-55	222.4
	80PYH08	PDDH	MGA94_54	518009.54	6449885.43	286.14	110	Pyrite Hill	-60	222.4
	80PYH09	PDDH	MGA94_54	517917.4	6449931.76	286.55	100.5	Pyrite Hill	-48.5	222.4
	80PYH10	PDDH	MGA94_54	518392.96	6449565.96	285.53	145.3	Pyrite Hill	-50	222.4
	80PYH11	PDDH	MGA94_54	518440.96	6449329.52	297.25	103.1	Pyrite Hill	-50	280.4
	80PYH12	PDDH	MGA94_54	518407.28	6449137.31	292.63	109.5	Pyrite Hill	-50	280.4
	80PYH13	DDH	MGA94_54	518358.2	6449037.7	290.35	77	Pyrite Hill	-50	280.4
	80PYH14	DDH	MGA94_54	518661.18	6449287.62	277.96	300.3	Pyrite Hill	-60	280.4
	93MGM01	PDDH	MGA94_54	518185.44	6449713.77	286.28	70	Pyrite Hill	-60	222.4
	93MGM02	2 PDDH	MGA94_54	518515.45	6449454.67	284.79	180	Pyrite Hill	-60	258.4
	98TC01	RC	MGA94_54	522750.06	6451339.73	267.27	100	Railway	-60	158.4
	98TC02	RC	MGA94_54	522392.41	6451386.83	266.78	100	Railway	-60	140.4
	98TC03	RC	MGA94_54	520816.45	6449369.39	313.05	84	Big Hill	-60	135.4
	98TC04	RC	MGA94_54	520860.05	6449450.85	304.09	138.25	Big Hill	-60	140.4
	98TC05	RC	MGA94_54	520728	6449328.07	288.63	70	Big Hill	-50	122.4
	98TC06	RC	MGA94_54	520715	6449343	285.13	108	Big Hill	-60	125.4
	98TC07	RC	MGA94_54	520785.97	6449388.21	299.22	120	Big Hill	-50	133.4
	98TC08	RC	MGA94_54	520801.95	6449477.81	291.01	90	Big Hill	-60	150.4
	98TC09	RC	MGA94_54	520822.21	6449460.79	296.25	114	Big Hill	-60	133.4
	98TC10	RC	MGA94_54	521019.02	6449575.66	281.08	134	Big Hill	-50	172.4
	98TC11	RC	MGA94_54	522411.2	6451373.96	267.01	35	Railway	-60	132.4
	DDH	Diamond	drill hole							
	PDDH	Diamond	drill hole with	percussion p	ore-collar					

RCDDH Diamond drill hole with reverse circulation pre-collar

RDDH Diamond drill hole with rotary air blast pre-collar

RC Reverse Circulation drill hole

Criteria	JORC Code Explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Drill hole intercept grades are reported as down-hole length-weighted averages with any non-recovered sample within the reported intervals treated as no grade. The cut-off used for selecting significant intersections reflects the overall tenor of mineralisation, in most cases >500 ppm cobalt. No top cuts have been applied when calculating average grades for reported significant intersections.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Drill holes at the Thackaringa project are typically angled at 50° or 60° and drilled perpendicular to the mineralised trend with drilling orientations adjusted along strike to accommodate folded geological sequences. Mineralisation at the Big Hill and Railway prospects is steeply dipping and consequently mineralised intersections will be greater than true width. At Pyrite Hill mineralisation is gently dipping and mineralised intersections will be close to true width. There is insufficient geological knowledge to accurately estimate true widths and as such all drill intersections are reported as down hole lengths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Appropriate maps and sections are presented in the accompanying ASX release.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not prac- ticable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Only mineralised drill hole intersections regarded as highly anomalous and of economic interest are reported. The proportion of each hole represented by the reported intervals can be ascertained from the sum of the reported intervals divided by the total drill hole depth. All assay results for drill holes included in the various Mineral Resource estimates have been considered and comprise results not necessarily regarded as anomalous.

Criteria	JORC Code Explanation	Commentary
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophys- ical survey results; geochemical survey results; bulk samples – size and method of treatment; metal- lurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 A Preliminary Feasibility Study ('PFS') was completed in June 2018 and released on 4 July 2018. Results of the PFS can be reviewed via the ASX Announcement Thackaringa Pre-Feasibility Study Announced.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 COB is continuing to advance current work programs including further bulk test work, optimisation of power studies, tailings studies, project mining, environmental and engineering studies. Presently, COB is progressing bulk scale concentration test work on 44.5 t of RC chips (See ASX Announcement 26 Feb 2019); weighted average head grades 1002ppm Co, 10.5% Fe, 10.1% S. Further updates to be released when test work is completed Areas of possible extension are outlined in the ASX Announcement Bankable Feasibility Study Commences with Drilling Campaign and Project Optimisation Studies (13 September 2018).

Criteria	JORC Code Explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource 	 The Thackaringa drilling database exists in electronic form under the independent management of Maxwell GeoServices. The Maxwell Data Schema (MDS) strictly applies integrity to all downhole and measurement recordings. If data fails the integrity rules, the data is NOT loaded into the database.
	estimation purposes.	In general, the following rules are applied:
	 Data validation procedures used. 	Downhole intervals Depth_To > Depth_From
		 Downhole intervals < Max depth
		 No overlapping intervals
		 Dips between -90 & 90°
		 Azimuths, dip direction, alpha, beta are all between 0 & 360°
		 Gamma between 0 & 90°
		 Individual percentage values <= 100%; total of all percentage values <=100%
		Recovery values <= 110%; RQD values <= 100%
		 Incremental values must have data in preceding values before the next can be entered (e.g. Cannot have Lith2 unless Lith1 exists)
		 Cannot enter qualifiers unless the primary code is populated (e.g. Cannot have a Lith_Grainsize or a Lith_Colour unless Lith_Code is populated)
		 Dates <= current daily (load) date; start dates <= complete dates etc.
		Codes for fields linked to corresponding library tables can only be loaded if they are set to Is_Active = 'TRUE' in the library table
		 Once drill holes, linear sites and point sites have been set to Validated = 'TRUE', no data related to these can be updated inserted or deleted.
		 Once Load_Date and Loaded_By fields have been populated upon database loading these fields are unable to be modi- fied. Instead any updates are recorded in the Modified_Date and Modified_By fields.
		A Data_Source field is required for ALL data tables
		 Additionally, the MDS stores every instance (record) of data loading, data modification, and who loaded and modified that particular data, as well as data sources where appropriate. This makes the data loading process highly auditable.
		 The database was extensively examined by SRK Consulting with various minor issues identified and addressed during the geological modelling and Mineral Resource estimation process. Examples of issues examined and rectified include:
		 Correct prioritisation of assay method where upper limits of detection are exceeded;
		 Inclusion / exclusion and quality of historic assays;
		 Use of correct downhole survey grid systems and survey prioritisation
		 Inclusion of up to date density information
		 Inclusion of up to date QAQC data including standards, duplicates, blanks and lab repeats

Section 3 - Estimation and Reporting of Mineral Resources

Criteria	JORC Code Explanation	Commentary
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been under- taken indicate why this is the case. 	 The geological model used for the resource estimation was been developed by Dr Stuart Munroe of SRK Consulting in conjunction with other consultants and COB employees, following a review of previous mapping, over approximately nine days on site at the Thackaringa project during drilling in November 2017.
Geological interpretation	 Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The mineralisation at Thackaringa is well exposed at surface and forms prominent topographic highs. The mineralisation has been mapped by previous lease holders and presented in statutory annual reports which are in the public domain. The previous mapping has been compiled and re-mapped by Mr Garry Johansen for COB. Dr Stuart Munroe of SRK Consulting completed reconnaissance mapping and reviewed the controls on mineralisation in preparation for the Mineral Resource estimate announced to the ASX on 19 March 2018. Confidence in the Pyrite Hill geological model has been greatly improved by the drilling completed during 2017 - 2019. The geological model has been developed from a good understanding of the distribution of surface mineralisation, observed controls on mineralisation and the extensive drill hole intersections. Two key structural controls on mineralisation are, (1); the primary foliation (bedding), as a fluid flow pathway and site for deposition of cobaltiferous pyrite, and (2); bedding parallel shear zones at the contact of quartz – albite gneiss. These shear zones appear to be responsible for fold thickening of the quartz – albite gneiss. Much of the folding appears to be slump or soft-sediment folding. The fold hinges have a variable plunge (moderate to steeply east to north-east). No viable alternative mineralisation models have been developed. The mineralisation host is a quartz + albite + cobaltiferous pyrite gneiss. This rock is defined by the presence of disseminated pyrite, concentrated parallel the primary foliation in a fine-grained, recrystalised quartz + albite groundmass. Where the pyrite is present there is an increase in the silica content and an almost complete absence of biotite and sericite. In addition to the logged geology, most of the drill holes have multi-element analysis. An independent geological consultant has used this data to develop a lithogeochemical model profile for each rock type logged. The lithogeochemical model profi

Criteria	JORC Code Explanation	Commentary
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The Railway Big Hill portion of the deposit is approximately 3,500m along strike, 350m down dip and between 20m and 300m across strike averaging around 70m across strike. This portion is partially a steeply dipping linear formation but with a complexly folded area to the North East. The linear portion is distinguished by a distinct high grade Western Hangingwall zone.
		 The Pyrite Hill portion of the deposit is an arc like formation some 1,000m along strike, 400m down dip and between 10m and 100m across strike.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 100m across strike. The wireframe geological modelling, database validation and compositing were carried out in the Leapfrog software package. The estimation and classification were completed in the Isatis software package. The final model is presented in the Surpac software package. Three variables Co, Fe and S are highly correlated and have been Co-Kriged. Co-Kriging involves simultaneous fitting of variogram models to the three main variables and to three cross variograms and simultaneous estimation accounting for the spatial continuity of all three variables at once. This maintains the correlations between variable which are not necessarily honoured when independent Kriging is performed. The orientations of both variograms and search ellipses is varied on a block by block basis. The orientations are controlled by the set of trend and fold wireframes. Each wireframe triangle centroid is assigned a dip and strike and these are estimated using a nearest neighbour estimate into the blocks prior to grade estimation. Eleven domains are used all with hard boundaries to control geology, geometry and grade and ensure appropriate samples are selected for estimation. An additional transitional material domain was used at Pyrite Hill with a soft boundary into the fresh material. No top cuts or caps are used for any of the variables as the grade distributions are not highly skewed and the estimate validated well without the need for cutting or capping. Multivariate variography was completed for all domains with sufficient data. Given the folded nature of many of the domains and the use of local orientations, only three multivariate models were utilised for estimation. Two for the Pyrite Hill domain (North and South) and another for all of the remaining Big Hill and Railway domains. Sm assay composites are used with residual short lengths less than 1 m being incorporated and redistributed such that final composite lengths may be slightly shorter and
		search with an optimum of 32 composites was used. A higher sample search with an optimum of 32 composites and maximum of 64 was tested, maximising the regression slopes and smoothing the estimate but this excessively smoothed the block distribution and did not reflect the true block variability and was not utilised in the

final block model.

Criteria	JORC Code Explanation	Commentary
Estimation and modelling techniques (continued)		 Block size used is 5m (east), 10m in (north) and 10m (elevation). This compares to an average drill spacing of between 25m and 60m along strike with average sample lengths of 1m combined with variogram ranges between 115m and 160m along strike, 70m to 80m down dip and 18m to 40m across strike. Variography shows moderate to low nugget effect.
		 Validation was completed by:
		 statistical comparisons to declustered composite averages per domain at zero cut off
		 statistical inspection of density, regression slopes, kriging efficiency, number of composites used
		 visual inspection of grades, regression slopes, kriging efficiency, number of composites used
		 Comparison of grades and tonnages above cut off to previous estimates
		 Swath plots
		 Global change of support checks
		 Maximum extrapolation for Inferred material is approximately 120r and averages around 80m.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	 Tonnage and assays are on a dry basis.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 The Mineral Resource has been reported at a cut-off of 400ppm cobalt equivalent to appropriately reflect the tonnes and grade of estimated blocks that will meet potential beneficiation process currently under consideration according to the Thackaringa JV Preliminary Feasibility Study (PFS).
		 Calculation of the cobalt cut-off grade is based on a simple cut-of formula typically used for pit optimisation:
		 Cut-off grade = processing cost/ (recovery * price).
		The inputs for this are based on the following:
		 Cobalt Blue's current estimate of ore related costs at A\$27/t ore.
		 Cobalt price of US\$27/lb Co.
		Exchange rate (A\$ to US\$) of 0.74.
		 Cobalt Blue's PFS estimate of cobalt recovery at 85%.
		 The resulting cobalt cut-off grade is 395 ppm Co which is rounded to 400 ppm for reporting purposes.
		 The formula for a cobalt equivalent of combined Co and S revenue is as follows:
		 CoEq ppm = Co ppm + (S ppm * (S price/ Co price) * (S recovery/ Co recovery))
		 For this calculation, SRK has assumed a cobalt price and recovery as above and a sulphur price of US\$150/t and a sulphur recovery of 75%. This equates to:
		 CoEq ppm = Co ppm + (S% * 22.235).
		 The CoEq cut-off is the same as the Co cut-off, i.e. 400 ppm CoEq

36

Criteria	JORC Code Explanation		Commentary
Cut-off parameters (continued)		•	SRK has relied on Cobalt Blue's PFS assessment of the processing costs and cobalt recoveries and has not independently reviewed these aspects.
		•	SRK is unaware of any other similar style of deposit that is at surface and amenable to open cut mining.
Mining factors or	 Assumptions made regarding possible mining methods, minimum mining dimensions and 	•	Open pit mining is assumed as the deposits outcrop at surface. Conceptual pit limit optimisations were completed on the 2018
assumptions	internal (or, if applicable, external) mining dilution. It is always neces- sary as part of the process of determining reasonable prospects for eventual economic extraction		Railway – Big Hill Mineral Resource and the Pyrite Hill 2019 Mineral Resource using Whittle Pit Limit Optimisation Software. A pit shell with a 1.3 revenue factor was subsequently used to constrain the reporting of the updated Mineral resources. Key assumptions for generation of pit shells included:
	to consider potential mining	•	Resource Classifications: All classifications including unclassified
	methods, but the assumptions made regarding mining methods and parameters when estimating		 Whittle Model Base Setup: MiningOne Model used for 2018 Ore Reserves.
	Mineral Resources may not always		Price: US\$27/lb Co
	be rigorous. Where this is the		FX: \$0.74 AUD:USD
	an explanation of the basis of the		 Cobalt Recovery: 85%
	mining assumptions made.		 Sulphur Price: US\$150/t mine gate price
			 Sulphur Recovery: 75%
			 Minimum Mining Width: No Minimum Mining Width Constraint
Metallurgical factors or	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary 	•	Detailed metallurgical studies completed for the Preliminary Feasibility Study have examined a processing pathway comprising four primary stages of ore treatment:
assumptions	as part of the process of		 Concentration of Pyrite from Ore
	determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation		The mined ore is crushed to p80 ~ 800–900 um (p100 1.2mm), and passed over gravity spirals to produce a pyrite concentrate. The gravity tails are screened and the fines fraction (<125 um) is sent to a scavenger flotation circuit to recover any sulphides. The use of gravity spirals, takes advantage of the coarse pyrite grains (p80 200-800 um), and limits costs associated with crushing and milling the ore, as would be the case for a typical flotation circuit requiring feed at p80 100–200 um.
	of the basis of the metallurgical assumptions made.		In the PFS testwork program, 820 kg of ore at 607 ppm Co, 7.94% Fe, 7.58% S & 59.84% SiO2 was trialled using a full-sized gravity spiral and a 14 L flotation cell. The recovery of cobalt to concentrate was 92%, at a grade of 3326 ppm. The ore was tested on a continuous pilot basis.
			Thermal Decomposition (Pyrolysis) Of Pyrite Concentrate
			The pyrite mineral is thermally decomposed into pyrrhotite and elemental sulphur by heating to 650–700°C. A nitrogen atmosphere is used to prevent any oxidation. The off-gas is collected, and cooled to recover the sulphur. In the PFS testwork program, 100 kg of concentrate grading 3326 ppm cobalt was processed in a custom built rotary furnace. Variations in operating conditions were tested, with the best results showing that >95% of the pyrite could be converted into pyrrhotite along with the simultaneous recovery of 40% of the head sulphur. The calcine was then passed through a
			magnetic separator to prepare a magnetic fraction containing pyrrhotite for leaching, and a non-magnetic fraction containing unreacted pyrite for recycle to the concentrator circuit.

Criteria	JORC Code Explanation	Commentary
Metallurgical factors or assumptions (continued)		• Leaching and Production of Mixed Hydroxide Precipitate The artificial pyrrhotite is leached in a low-temperature (130°C) and pressure (10–15 bar) autoclave. The resulting leach residue is screened, and the coarse fraction is sent for sulphur recovery by distillation or remelting. The fines fraction is discarded as tails from the process plant. The resulting leach solutions are treated to remove iron, copper and zinc before precipitating the cobalt as a mixed hydroxide (along with nickel and manganese).
		In the PFS testwork program, ~ 30 kg of calcine product from the furnace was leached in batches of 250g to 1 kg. Variations in the operating conditions were tested, with the best results showing that 97-98% of the cobalt could be leached consistently from the pyrolysis calcine.
		 Refining of The Mixed Hydroxide Precipitate to Produce Cobalt Sulphate Crystals
		In the PFS testwork program, variations on the ion-exchange and solvent extraction circuits were tested. The best conditions resulted in the production of cobalt sulphate heptahydrate grading ~20.5% with total impurities at ~800 ppm copper and 800 ppm manganese. Further optimisation of the parameters for the ion-exchange circuits, is expected to reduce the copper and manganese content reporting to the cobalt sulphate in future testwork.
Environmental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	Estimation of waste sulphur values into the block model has been completed for waste material in order to estimate the component of potentially acid forming material. Sulphur (S) has been estimated in both the Resource and waste material where information is available. A background S value of 0.05% has been included where no assay information is available and where expected lithology types are typically below the 0.05% S value. The construction of a suitable tailings facility is assumed for storing waste. It is considered a portion of water from such a facility could be recovered for re-use as process water.

Criteria	JORC Code Explanation		Commentary
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the meas- urements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	•	 Bulk density has been determined using the Archimedes method (weigh in water weight in air). Some 1,527 core samples between 1.2m and 0.1m from across the deposit have been utilised. These samples are examined statistically to eliminate errors and outliers. The valid samples are then matched with the Co, Fe and S assay values for their respective intervals. Good linear regressions are obtained with all three elements. The final densities are assigned on a block by block basis using a linear regression equation is: Bulk density = 0.0143*(Co ppm /10000 + Fe % + S %) + 2.5722
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	•	Classification is based on the kriging regression slope with class surfaces created from viewing the regression slopes of the estimated blocks in section. Measured is defined as all Fresh material above a 0.8 kriging regression slope surface. Indicated is defined as all material above the 0.5 kriging regression slope surface together with all Transition material. Inferred is defined as all material above the 0 kriging regression slope surface and below the 0.5 kriging regression slope surface. The classification reflects the Competent Person's view of the deposit.
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	•	No audits or external reviews of this Resource have been completed to date.

Criteria	JORC Code Explanation	Commentary
Discussion of relative accuracy/ confidence	Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the applica- tion of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appro- priate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant to nnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production dat, where available	 Accuracy and confidence in the estimation is expressed by the Measured, Indicated and Inferred classification applied. No additional confidence measures have been estimated or applied. Global change of support calculations indicate that the estimate for Railway and Big Hill still contains an amount of smoothing that may be underestimating the grade and overestimating the tonnage above Co 500ppm in the order of 5% to 10%. The Railway and Big Hill current estimate is therefore a compromise between local block and global grade and tonnage accuracy which is considered appropriate in the Competent Person's view and experience. Global change of support calculations indicate that the estimate for Pyrite Hill still contains a small amount of smoothing that may be overestimating the tonnage above Co 500ppm in the order of 5%. The current estimate is therefore considered to be globally robust at the current level of drilling density (approximately 40m x 40m in Measured areas). No mining or production has taken place.

Commentary

- timation is expressed by ed classification applied. No ve been estimated or applied.
- ons indicate that the estimate s an amount of smoothing ade and overestimating the order of 5% to 10%. The te is therefore a compromise de and tonnage accuracy the Competent Person's view